Bath fans help remove odors and moisture  and can be used in some homes to satisfy whole-house ventilation requirements.
Older homes often lack bathroom exhaust fans. In the old days, if the bathroom was smelly or steamy, you were supposed to open a window to air it out.This isn’t a very logical ventilation method, especially when temperatures are below zero, or when the weather is 90°F and humid. Yet this time-honored method of bathroom ventilation is still enshrined in our building codes. According to the 2009 International Residential Code  a bathroom with an operable window does not need to have a bath exhaust fan .In spite of the code’s archaic loophole, builders should install an exhaust fan in every bathroom or toilet room — even when the bathroom has a window.

A bath exhaust fan can perform several functions:

  • It can exhaust smelly air, allowing fresher air to enter the bathroom.
  • It can exhaust humid air, allowing dryer air to enter the bathroom.
  • When operated for 24 hours per day or when controlled by a timer or dehumidify controller , it can act (in some cases) as the most important component of a whole-house ventilation system.

Why you should call us for installing or replacing your exhaust fan?

  • We offer the most Quietest and powerful exhaust fan on the market.
  • We offer the most energy efficient fans on the market.
  • We offer free affordable  estimate and consultation and absolutely no obligation
  • At BC HighLight Electric we are a team of expert and experienced  electrician .we offer the proper exhaust fan for every location, we know how to do the job without leaving any damage or hole in your property
  • We are fully licensed, bonded and insured company
  • We offer two years warranty for all product we supply and 5 years on workmanship .

 

 

Protect your outdoor electrical systems:

any outdoor electrical outlets should be GFCI outlets and covered by a “bubble cover” to keep the elements out. If your electrical service cable is exposed, make sure it’s not damaged. During the holidays, don’t hang any decorations on or near the cable.

Electrical Codes for Ceiling Fan Support

Ceiling fans weigh more than most ceiling fixtures. Therefore ceiling fans must be supported properly to prevent them from falling.
To properly install a ceiling fan and provide the necessary support there are two methods that must be followed:
An approved fixture box designed to support the weight of the ceiling fan must be installed.

The fixture box must be attached to supported structure components such as wood ceiling joists or wood blocks that are properly fastened between two ceiling joists.

Approved ceiling fixture boxes that have expandable bar hanging devices can be used when installed by following the instructions supplied by the manufacturer.

 

 

 

It is important that you follow the manufacturer’s instructions with respect to the use of a GFCI.  Test permanently wired GFCIs monthly, and portable devices before each use. Press the “test” and “reset” buttons. Plug a “night light” or lamp into the GFCI-protected wall outlet (the light should turn on), then press the “TEST” button on the GFCI. If the GFCI is working properly, the light should go out. If not, have the GFCI repaired or replaced. Press the “RESET” button on the GFCI to restore power.

If the “RESET” button pops out but the “night light” or lamp does not go out, the GFCI has been improperly wired and does not offer shock protection at that wall outlet. Contact a qualified electrician to correct any wiring errors.

 

A Class A Ground Fault Circuit Interrupter (GFCI) works by detecting any loss of electrical current in a circuit (e.g., it will trip at a maximum of 6mA). When a loss is detected, the GFCI turns the electricity off before severe injuries or electrocution can occur. A painful non-fatal shock may occur during the time that it takes for the GFCI to cut off the electricity so it is important to use the GFCI as an extra protective measure rather than a replacement for safe work practices.

GFCI wall outlets can be installed in place of standard outlets to protect against electrocution for just that outlet, or a series of outlets in the same branch circuit. A GFCI Circuit Breaker can be installed on some circuit breaker electrical panels to protect an entire branch circuit. Portable in-line plug-in GFCIs can be plugged into wall outlets where appliances will be used.

  • Keep power cords clear of tools during use.
  • Suspend extension cords temporarily during use over aisles or work areas to eliminate stumbling or tripping hazards.
  • Replace open front plugs with dead front plugs. Dead front plugs are sealed and present less danger of shock or short circuit.
  • Do not use light duty extension cords in a non-residential situation.
  • Do not carry or lift up electrical equipment by the power cord.
  • Do not tie cords in tight knots. Knots can cause short circuits and shocks. Loop the cords or use a twist lock plug.
  • Inspect portable cord-and-plug connected equipment, extension cords, power bars, and electrical fittings for damage or wear before each use. Repair or replace damaged equipment immediately.
  • Always tape extension cords to walls or floors when necessary. Nails and staples can damage extension cords causing fire and shock hazards.
  • Use extension cords or equipment that is rated for the level of amperage or wattage that you are using.
  • Always use the correct size fuse. Replacing a fuse with one of a larger size can cause excessive currents in the wiring and possibly start a fire.
  • Be aware that unusually warm or hot outlets may be a sign that unsafe wiring conditions exists. Unplug any cords or extension cords to these outlets and do not use until a qualified electrician has checked the wiring.
  • Always use ladders made with non-conductive side rails (e.g., fibreglass) when working with or near electricity or power lines.
  • Place halogen lights away from combustible materials such as cloths or curtains. Halogen lamps can become very hot and may be a fire hazard.
  • Risk of electric shock is greater in areas that are wet or damp. Install Ground Fault Circuit Interrupters (GFCIs) as they will interrupt the electrical circuit before a current sufficient to cause death or serious injury occurs.
  • Use a portable in-line Ground Fault Circuit Interrupter (GFCI) if you are not certain that the receptacle you are plugging your extension cord into is GFCI protected.
  • Make sure that exposed receptacle boxes are made of non-conductive materials.
  • Know where the panel and circuit breakers are located in case of an emergency.
  • Label all circuit breakers and fuse boxes clearly. Each switch should be positively identified as to which outlet or appliance it is for.
  • Do not use outlets or cords that have exposed wiring.
  • Do not use portable cord-and-plug connected power tools with the guards removed.
  • Do not block access to panels and circuit breakers or fuse boxes.
  • Do not touch a person or electrical apparatus in the event of an electrical accident. Always disconnect the power source first.

Do not work close to power lines. Recommended distances vary by jurisdiction and/or utility companies. Check with both your jurisdiction and electrical utility company when working, driving, parking, or storing materials closer than 15 m (49 feet) to overhead power lines.

  • If you must be close to power lines, you must first call your electrical utility company and they will assist you.
  • If your vehicle comes into contact with a power line:
    • DO NOT get out of your vehicle.
    • Call 911 and your local utility service for help.
    • Wait for the electrical utility to come and they will tell you when it is safe to get out of your vehicle.
    • Never try to rescue another person if you are not trained to do so.
    • If you must leave the vehicle (e.g., your vehicle catches on fire), exit by jumping as far as possible – at least 45 to 60 cm (1.5 to 2 feet). Never touch the vehicle or equipment and the ground at the same time. Keep your feet, legs, and arms close to your body.
    • Keep your feet together (touching), and move away by shuffling your feet. Never let your feet separate or you may be shocked or electrocuted.
    • Shuffle at least 10 metres away from your vehicle before you take a normal step. Do not enter an electrical power substation, or other marked areas.
  • Do not enter an electrical power substation, or other marked areas.

All electrical systems have the potential to cause harm. Electricity can be either “static” or “dynamic.” Dynamic electricity is the uniform motion of electrons through a conductor (this is known as electric current). Conductors are materials that allow the movement of electricity through it. Most metals are conductors. The human body is also a conductor. This document is about dynamic electricity.Note: Static electricity is accumulation of charge on surfaces as a result of contact and friction with another surface. This contact/friction causes an accumulation of electrons on one surface, and a deficiency of electrons on the other surface. The OSH Answers document on How Do I Work Safely with Flammable and Combustible Liquids? (Static Electricity) has more information.Electric current cannot exist without an unbroken path to and from the conductor. Electricity will form a “path” or “loop”. When you plug in a device (e.g., a power tool), the electricity takes the easiest path from the plug-in, to the tool, and back to the power source. This is also known as creating or completing an electrical circuit.

The voltage of the electricity and the available electrical current in regular businesses and homes has enough power to cause death by electrocution. Even changing a light bulb without unplugging the lamp can be hazardous because coming in contact with the “hot”, “energized” or “live” part of the socket could kill a person.